nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 04, v.51 106-114
三维正交玻璃纤维/聚丙烯纤维混纺纱织物增强环氧基复合材料冲击性能及损伤机制
基金项目(Foundation): 国家自然基金面上项目(52273054)
邮箱(Email): fjxu@dhu.edu.cn;
DOI: 10.19886/j.cnki.dhdz.2024.0405
摘要:

相较于传统的层合板复合材料,三维复合材料具有更高的比强度和损伤容限,其抗冲击性能和整体性更优。然而在实际应用中,制品会受到多次低速冲击载荷的影响,导致内部损伤。因此,设计三维正交玻璃纤维/聚丙烯纤维(GF/PP)混纺纱织物增强环氧基复合材料多次冲击的试验,通过分析多次冲击响应和观察损伤形貌,揭示不同冲击载荷下复合材料的力学响应规律、主要损伤机制及损伤模式。对预先热处理试样的损伤机制和形貌进行了分析,得到聚丙烯(PP)纤维在复合材料冲击中的作用机制。研究表明:热处理使聚丙烯纤维熔化并重新结晶,改变了其体积和形态,从而提高了环氧基复合材料的韧性。随着冲击能量的增加,首次冲击峰值力增大。试样在连续三次25 J能量冲击后,峰值载荷显著下降,最大变形量大约增加至首次冲击的1.2倍。在9 J能量下,随着冲击次数的累积,复合材料的损伤模式种类增多,吸能能力也随之增强。

Abstract:

Compared with the traditional laminated composite, three-dimensional composites have higher specific strength and damage tolerance, and have good impact resistance and overall integrity. However, in practical application, the product is inevitably subjected to multiple low-velocity impact loads, resulting in some internal damage. Therefore, the three-dimensional orthogonal glass fiber/polypropylene fiber(GF/PP) blended yarn fabric-reinforced epoxy composites were designed for multiple impact tests. By analyzing the response of multiple impact response law and observing the damage morphology, the mechanical response characteristics, main damage mechanism, and damage modes of composites impacted multiple times under different impact loads are revealed. At the same time, the damage mechanism and morphology of the pre-heat-treated samples were analyzed to obtain the role of PP fiber in the impact behavior of composites. It is shown that heat treatment melts and recrystallizes the polypropylene fibers, changes their volume and morphology, thereby enhancing the toughness of epoxy composites. As the impact energy increases, the peak force of the first impact increases. After the specimen was subjected to three consecutive 25 J energy impacts, the peak load decreased significantly, and the maximum deformation increased to approximately 1.2 times that of the first impact. With the accumulation of the number of impacts at 9 J energy, the variety of damage modes of composites increased, and the energy absorption capacity was also enhanced.

参考文献

[1] 娄阁,陈思.三维针织/机织聚氨酯基复合材料的力学性能[J].东华大学学报(自然科学版),2023,49(4):30-34.LOU G,CHEN S.Mechanical properties of three-dimensional knitted/woven polyurethane-based composites[J].Journal of Donghua University (Natural Science),2023,49(4):30-34.

[2] ARIKAN V,SAYMAN O.Comparative study on repeated impact response of E-glass fiber reinforced polypropylene & epoxy matrix composites[J].Composites Part B:Engineering,2015,83:1-6.

[3] LU T Y,CHEN X H,WANG H,et al.Comparison of low-velocity impact damage in thermoplastic and thermoset composites by non-destructive three-dimensional X-ray microscope[J].Polymer Testing,2020,91:106730.

[4] KIM D H,JUNG K H,LEE I G,et al.Three-dimensional progressive failure modeling of glass fiber reinforced thermoplastic composites for impact simulation[J].Composite Structures,2017,176:757-767.

[5] WU Z Y,WU C J,LIU Y S,et al.Experimental study on the low-velocity impact response of braided composite panel:Effect of stacking sequence[J].Composite Structures,2020,252:112691.

[6] ZHANG C,RAO Y F,LI W.Low-velocity impact behavior of intralayer hybrid composites based on carbon and glass non-crimp fabric[J].Composite Structures,2020,234:111713.

[7] 戴迪,张威,张俊杰,等.三维角联锁机织复合材料螺栓连接结构的拉伸性能及失效损伤[J].东华大学学报(自然科学版),2020,46(4):521-528.DAI D,ZHANG W,ZHANG J J,et al.Tensile properties and failure damage of three-dimensional angle-interlock woven composites bolted joint structures[J].Journal of Donghua University (Natural Science),2020,46(4):521-528.

[8] 吴亚波,江小州,刘帅,等.三维编织复合材料力学性能研究进展[J].科技与创新,2021,26(13):108-113.WU Y B,JIANG X Z,LIU S,et al.Research progress on mechanical properties of three-dimensional braided composites[J].Seience and Technology & Innovation,2021,26(13):108-113.

[9] HOGG P J.Toughening of thermosetting composites with thermoplastic fibres[J].Materials Science and Engineering:A,2005,412(1/2):97-103.

[10] FANG W J,YANG X J,XU X X,et al.Quasi-static and low-velocity impact responses of polypropylene random copolymer composites with adjustable crystalline structures[J].Composites Part B:Engineering,2021,224:109139.

[11] DALFI H,KATNAM K B,POTLURI P.Intra laminar toughening mechanisms to enhance impact damage tolerance of 2D woven composite laminates via yarn level fiber hybridization and fiber architecture[J].Polymer Composites,2019,40(12):4573-4587.

[12] SELVER E,POTLURI P,HOGG P,et al.Impact damage tolerance of thermoset composites reinforced with hybrid commingled yarns[J].Composites Part B:Engineering,2016,91:522-538.

[13] PADHAN M,MARATHE U,BIJWE J.Exceptional performance of bi-directionally reinforced composite of PEEK manufactured by commingling technique using poly(p-phenylene-benzobisoxazole) (PBO) fibers[J].Composites Science and Technology,2022,218:109125.

[14] TEHRANI DEHKORDI M,NOSRATY H,SHOKRIEH M M,et al.The influence of hybridization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites[J].Materials & Design,2013,43:283-290.

[15] PRABHAKAR M M,RAJINI N,MAYANDI K,et al.Effect of interfacial bonding on the low velocity impact performance of jute fibre/epoxy polymer composites[J].International Journal of Adhesion and Adhesives,2024,135:103833.

[16] ALSHEHRI A H,ALAMRY A,KOLOOR S S R,et al.Investigating low velocity impact and compression after impact behaviors of carbon fiber/epoxy composites reinforced with helical multiwalled carbon nanotubes[J/OL].Journal of Engineering Research,(2024-07-26)[2024-12-10].https://doi.org/10.1016/j.jer.2024.07.017.

[17] OLHAN S,ANTIL B,BEHERA B K.Low-velocity impact and quasi-static post-impact compression analysis of woven structural composites for automotive:influence of fibre types and architectural structures[J].Composite Structures,2025,352:118676.

[18] PHEYSEY J,DEL CUVILLO R,NAYA F,et al.Low-velocity impact response of hybrid sheet moulding compound composite laminates[J].Composites Part A:Applied Science and Manufacturing,2025,188:108527.

[19] 俞鸣明,朱雪莉,刘雪强,等.低速多次冲击下碳纤维/环氧树脂基复合材料层合板失效机制及剩余强度评估[J].复合材料学报,2023,40(9):5359-5370.YU M M,ZHU X L,LIU X Q,et al.Failure mechanism and assessment of residual strength of carbon fiber/epoxy resin matrix composite laminates under multiple impacts at low velocities[J].Acta Materiae Compositae Sinica,2023,40(9):5359-5370.

[20] LIAO B B,ZHOU J W,LI Y,et al.Damage accumulation mechanism of composite laminates subjected to repeated low velocity impacts[J].International Journal of Mechanical Sciences,2020,182:105783.

[21] YING Z P,CHEN H Y,ZHU Z B,et al.Experimental investigation on the damage accumulation mechanism of 3D orthogonal woven composites under repeated low-velocity impacts[J].International Journal of Impact Engineering,2024,192:105035.

[22] BHUDOLIA S K,JOSHI S C.Low-velocity impact response of carbon fibre composites with novel liquid Methylmethacrylate thermoplastic matrix[J].Composite Structures,2018,203:696-708.

[23] JUNG K H,KIM D H,KIM H J,et al.Finite element analysis of a low-velocity impact test for glass fiber-reinforced polypropylene composites considering mixed-mode interlaminar fracture toughness[J].Composite Structures,2017,160:446-456.

[24] DANG C Y,SHEN X J,NIE H J,et al.Enhanced interlaminar shear strength of ramie fiber/polypropylene composites by optimal combination of graphene oxide size and content[J].Composites Part B:Engineering,2019,168:488-495.

[25] SARASINI F,TIRILLò J,D’ALTILIA S,et al.Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact[J].Composites Part B:Engineering,2016,91:144-153.

[26] SELTZER R,GONZáLEZ C,MU?OZ R,et al.X-ray microtomography analysis of the damage micromechanisms in 3D woven composites under low-velocity impact[J].Composites Part A:Applied Science and Manufacturing,2013,45:49-60.

[27] SHAH S Z H,MEGAT-YUSOFF P S M,KARUPPANAN S,et al.Performance comparison of resin-infused thermoplastic and thermoset 3D fabric composites under impact loading[J].International Journal of Mechanical Sciences,2021,189:105984.

[28] WANG C,CHEN Z,SILBERSCHMIDT V V,et al.Damage accumulation in braided textiles-reinforced composites under repeated impacts:Experimental and numerical studies[J].Composite Structures,2018,204:256-267.

[29] 曹淼,顾伯洪,孙宝忠.平纹铺层及三维角联锁复合材料热氧老化后低速冲击及剩余弯曲性能[J].东华大学学报(自然科学版),2020,46(1):16-22.CAO M,GU B H,SUN B Z.Low-velocity impact and residual flexural behaviors of plain laminates and 3D angular interlock woven composites after thermal oxidative ageing[J].Journal of Donghua University (Natural Science),2020,46(1):16-22.

[30] 雷婷,邵慧奇,季小强,等.碳纤维树脂基复合材料的层合板工艺对其表面粗糙度的影响[J].东华大学学报(自然科学版),2023,49(4):35-43.LEI T,SHAO H Q,JI X Q,et al.Impacts of laminate process on the surface roughness of carbon fiber resin matrix composites[J].Journal of Donghua University (Natural Science),2023,49(4):35-43.

[31] HOSUR M V,KARIM M R,JEELANI S.Experimental investigations on the response of stitched/unstitched woven S2-glass/SC15 epoxy composites under single and repeated low velocity impact loading[J].Composite Structures,2003,61(1/2):89-102.

基本信息:

DOI:10.19886/j.cnki.dhdz.2024.0405

中图分类号:TB332

引用信息:

[1]赵勤勤,石琳,吴震宇等.三维正交玻璃纤维/聚丙烯纤维混纺纱织物增强环氧基复合材料冲击性能及损伤机制[J].东华大学学报(自然科学版),2025,51(04):106-114.DOI:10.19886/j.cnki.dhdz.2024.0405.

基金信息:

国家自然基金面上项目(52273054)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索