nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.51 120-126
恒温水循环条件下CO2/CH4氩等离子体干重整试验研究
基金项目(Foundation): 中央高校基本科研业务费专项资金(2232024G-10)
邮箱(Email): wangfq@dhu.edu.cn;
DOI: 10.19886/j.cnki.dhdz.2025.0018
摘要:

在温和条件下将CO2和CH4两种温室气体转化成燃料或化学原料是能源和环境领域的重要课题。介质阻挡放电(DBD)在CO2/CH4干重整领域拥有巨大发展前景,但重整性能受多种因素影响。使用恒温水循环同轴介质阻挡放电反应器,研究CO2/CH4初始体积分数和循环水温度对放电特性和干重整性能的影响。结果表明:在CO2/CH4体系中引入Ar背景气体后,CO2和CH4的转化率分别达56.5%和64.8%,CO和H2的选择性达80%以上;在相同反应条件下提高CO2/CH4初始体积分数,导致CO2和CH4的转化率以及CO和H2的产率明显下降。循环水温度从25℃升至75℃时,因循环水温度影响了反应器中等离子体的放电特性,CO2转化率增加6.8%,CH4转化率变化不大。通过等离子体发射光谱探究CO2/CH4体积分数对干重整放电的影响,发现CO2/CH4体积分数增加使Ar谱线强度减弱,而放电功率增加使Ar谱线强度增强。

Abstract:

The conversion of greenhouse gases CO2 and CH4 into fuels and valuable chemicals under mild conditions is an important topic in both energy and environmental fields. Dielectric barrier discharge(DBD) has great development potential in dry reforming of CO2/CH4, but its reforming performance is affected by many factors. A thermostatic water circulation coaxial DBD reactor was used to investigate the effects of initial CO2/CH4 volume fraction and circulating water temperatures on both discharge characteristics and dry reforming performance. After the introduction of Ar background gas into the system, the conversion of CO2 and CH4 reached 56.5% and 64.8%, respectively, and the selectivity of CO and H2 reached more than 80%. Under the same discharge conditions, increasing the initial volume fractions of CO2/CH4 led to a significant decrease in the conversion rates of CO2 and CH4 as well as the yields of CO and H2. When the circulating water temperature increased from 25 ℃ to 75 ℃, the CO2 conversion increased 6.8% because the circulating water temperature affected the discharge characteristics of the plasma in the reactor, while it had little effect on the CH4 conversion. The spectral characteristics of the DBD of Ar plasma are also explored by spectral measurement.

参考文献

[1] 何峣.生物质的热裂解及催化分解特性研究[D].广州:华南理工大学,2015.HE Y.Study on pyrolysis and catalytic decomposition charac-teristics of biomass[D].Guangzhou:South China University of Technology,2015.

[2] VADIKKEETTIL Y,SUBRAMANIAM Y,MURUGAN R,et al.Plasma assisted decomposition and reforming of greenhouse gases:a review of current status and emerging trends[J].Renewable and Sustainable Energy Reviews,2022,161:112343.

[3] FRANZ R,PINTO D,USLAMIN E A,et al.Impact of promoter addition on the regeneration of Ni/Al2O3 dry reforming catalysts[J].ChemCatChem,2021,13(23):5034-5046.

[4] KHOJA A H,TAHIR M,AMIN N A S.Recent developments in non-thermal catalytic DBD plasma reactor for dry reforming of methane[J].Energy Conversion and Management,2019,183:529-560.

[5] NGUYEN H H,NASONOVA A,NAH I W,et al.Analysis on CO2 reforming of CH4 by corona discharge process for various process variables[J].Journal of Industrial and Engineering Chemistry,2015,32:58-62.

[6] AZIZNIA A,BOZORGZADEH H R,SEYED-MATIN N,et al.Comparison of dry reforming of methane in low temperature hybrid plasma-catalytic corona with thermal catalytic reactor over Ni/γ-Al2O3[J].Journal of Natural Gas Chemistry,2012,21(4):466-475.

[7] XU W C,BUELENS L C,GALVITA V V,et al.Improving the performance of gliding arc plasma-catalytic dry reforming via a new post-plasma tubular catalyst bed[J].Journal of CO2 Utilization,2024,83:102820.

[8] ALLAH Z A,WHITEHEAD J C.Plasma-catalytic dry reforming of methane in an atmospheric pressure AC gliding arc discharge[J].Catalysis Today,2015,256:76-79.

[9] DINH D K,TRENCHEV G,LEE D H,et al.Arc plasma reactor modification for enhancing performance of dry reforming of methane[J].Journal of CO2 Utilization,2020,42:101352.

[10] BIONDO O,HUGHES A,VAN DE STEEG A,et al.Power concentration determined by thermodynamic properties in complex gas mixtures:the case of plasma-based dry reforming of methane[J].Plasma Sources Science and Technology,2023,32(4):045001.

[11] CHO C H,KIM J H,YANG J K,et al.Dry reforming process using microwave plasma generator with high carbon dioxide conversion efficiency for syngas production[J].Fuel,2024,361:130707.

[12] HRYCAK B,CZYLKOWSKI D,JASI■,et al.Hydrogen production via synthetic biogas reforming in atmospheric-pressure microwave (915 MHz) plasma at high gas-flow output[J].Plasma Chemistry and Plasma Processing,2019,39(3):695-711.

[13] TIWARI S,CAIOLA A,BAI X W,et al.Microwave plasma-enhanced and microwave heated chemical reactions[J].Plasma Chemistry and Plasma Processing,2020,40(1):1-23.

[14] GOUJARD V,TATIBOU?T J M,BATIOT-DUPEYRAT C.Carbon dioxide reforming of methane using a dielectric barrier discharge reactor:effect of helium dilution and kinetic model[J].Plasma Chemistry and Plasma Processing,2011,31(2):315-325.

[15] WANG H,SONG L J,LI X H,et al.Hydrogen production from partial oxidation of methane by dielectric barrier discharge plasma reforming[J].Acta Physico-Chimica Sinica,2015,31(7):1406-1412.

[16] MEI D H,ZHANG P,DUAN G H,et al.CH4 reforming with CO2 using a nanosecond pulsed dielectric barrier discharge plasma[J].Journal of CO2 Utilization,2022,62:102073.

[17] YIN Y X,YANG T,LI Z K,et al.CO2 conversion by plasma:how to get efficient CO2 conversion and high energy efficiency[J].Physical Chemistry Chemical Physics,2021,23(13):7974-7987.

[18] ALAWI N M,SUNARSO J,PHAM G H,et al.Comparative study on the performance of microwave-assisted plasma DRM in nitrogen and argon atmospheres at a low microwave power[J].Journal of Industrial and Engineering Chemistry,2020,85:118-129.

[19] SNOECKX R,BOGAERTS A.Plasma technology-a novel solution for CO2 conversion?[J].Chemical Society Reviews,2017,46(19):5805-5863.

[20] ZHANG X M,CHA M S.Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor[J].Journal of Physics D:Applied Physics,2013,46(41):415205.

[21] WANG Y L,CHEN Y Z,HARDING J,et al.Catalyst-free single-step plasma reforming of CH4 and CO2 to higher value oxygenates under ambient conditions[J].Chemical Engineering Journal,2022,450:137860.

[22] REDDY E L,BIJU V M,SUBRAHMANYAM C.Production of hydrogen from hydrogen sulfide assisted by dielectric barrier discharge[J].International Journal of Hydrogen Energy,2012,37(3):2204-2209.

[23] MEI D H,DUAN G H,FU J H,et al.CO2 reforming of CH4 in single and double dielectric barrier discharge reactors:Comparison of discharge characteristics and product distribution[J].Journal of CO2 Utilization,2021,53:101703.

[24] ANDERSEN J A,CHRISTENSEN J M,M?,et al.Plasma-catalytic dry reforming of methane:Screening of catalytic materials in a coaxial packed-bed DBD reactor[J].Chemical Engineering Journal,2020,397:125519.

[25] RAY D,SAHA R,CH S.DBD plasma assisted CO2 decomposition:influence of diluent gases[J].Catalysts,2017,7(9):244.

[26] 王彧婕,李洁,龙华丽,等.等离子体CH4-CO2重整制合成气动力学分析[J].天然气化工,2007,32(2):26-31.WANG Y J,LI J,LONG H L,et al.Kinetic analysis for CO2 reforming with CH4 to synthesis gas by plasma[J].Natural Gas Chemical Industry,2007,32(2):26-31.

[27] NGUYEN H H,KIM K S.Combination of plasmas and catalytic reactions for CO2 reforming of CH4 by dielectric barrier discharge process[J].Catalysis Today,2015,256:88-95.

[28] RAY D,CHAWDHURY P,SUBRAHMANYAM C.Promising utilization of CO2 for syngas production over Mg2+-and Ce2+-promoted Ni/γ-Al2O3 assisted by nonthermal plasma[J].ACS Omega,2020,5(23):14040-14050.

[29] 何寿杰,周佳,渠宇霄,等.氩气空心阴极放电复杂动力学过程的模拟研究[J].物理学报,2019,68(21):215-224.HE S J,ZHOU J,QU Y X,et al.Simulation on complex dynamics of hollow cathode discharge in argon[J].Acta Physica Sinica,2019,68(21):215-224.

基本信息:

DOI:10.19886/j.cnki.dhdz.2025.0018

中图分类号:X701

引用信息:

[1]王佳怡,陈佳尧,刘建奇等.恒温水循环条件下CO_2/CH_4氩等离子体干重整试验研究[J].东华大学学报(自然科学版),2025,51(03):120-126.DOI:10.19886/j.cnki.dhdz.2025.0018.

基金信息:

中央高校基本科研业务费专项资金(2232024G-10)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索