nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 04, v.51 124-132
覆膜支架的金属支架结构设计对其力学性能的影响
基金项目(Foundation): 国家自然科学基金项目(61903078)
邮箱(Email): liuxy@dhu.edu.cn;
DOI: 10.19886/j.cnki.dhdz.2024.0216
摘要:

为深入探究覆膜支架的金属支架结构设计对其径向支撑性、弯曲柔顺性以及植入血管后的各项生物力学表现的影响,选择3种不同结构(Z型、M型、U型)的覆膜支架,并通过有限元方法建立相应的模型。分别模拟了这些支架的径向支撑、弯曲和植入血管的过程,并从中提取了覆膜支架的应力、径向支撑力、弯矩以及血管应力作为关键评估参数。结果表明,金属支架的结构设计对其力学性能影响显著。在径向支撑性测试中,施加相同的径向位移载荷时,M型结构覆膜支架展现出比Z型和U型更高的径向支撑力。增大M型结构覆膜支架的支架丝半径并减小支架高度,可进一步优化其径向支撑性能。在弯曲柔顺性方面,M型结构覆膜支架在弯曲时产生的弯矩最小,表明其柔顺性最佳。随着M型结构覆膜支架高度增加,其柔顺性减弱,而支架丝半径的变化对柔顺性的影响较小。在植入血管的压握过程中,Z型和U型结构覆膜支架产生的最大等效应力相近,且均远低于M型结构,但在植入血管的过程,Z型结构覆膜支架对血管产生的最大等效应力在3者中最小。重要的是,3种结构覆膜支架对血管产生的最大等效应力均未超过血管的屈服强度,确保了血管的安全性。

Abstract:

In order to further explore how the design of the metal stent structure of the stent graft affects its radial support, bending flexibility and various biomechanical performance after vascular implantation, three stent grafts with different structures(Z-type, M-type and U-type) were selected, and the corresponding models were established by the finite element method, and then the radial support, bending and vascular implantation processes of these stents were simulated, and the stress, radial support force, bending moment of the stent graft and vascular stress as the key evaluation parameters. The results show that the structural design of the metal bracket has a significant influence on its mechanical properties. Specifically, in the radial support test, when the same radial displacement load is applied, the M-type stent graft exhibits a higher radial support force than those of the Z-type and U-type. In addition, by increasing the wire radius and decreasing the height of the stent of the M-type stent graft, the radial support performance of the stent can be further optimized. In terms of bending compliance, the M-type stent graft generated the smallest bending moment during bending, indicating that it had the best flexibility. With the increase of the height of the M-type stent graft, its compliance weakens, while the change of stent filament radius has a relatively small effect on the compliance. As for the process of crushing and grasping the implanted blood vessels, the maximum equivalent stress generated by the Z-type and U-type stent grafts is similar and much lower than that of the M-type structure. However, in the process of vascular implantation, the maximum equivalent stress produced by the Z-type stent graft on the blood vessels is the smallest among the three. Importantly, the maximum equivalent stress of the three stent grafts on the blood vessels did not exceed the yield strength of the blood vessels, ensuring the safety of the blood vessels.

参考文献

[1] QIAO Y H,MAO L,WANG Y,et al.Hemodynamic effects of stent-graft introducer sheath during thoracic endovascular aortic repair[J].Biomechanics and Modeling in Mechanobiology,2022,21(2):419-431.

[2] YAZAR O,WONG C,SALEMANS P B,et al.Report of a semi-branched stent-graft to treat a type 1a endoleak after failed EVAR[J].CVIR Endovascular,2024,7(1):38.

[3] EMENDI M,ST?VERUD K H,TANGEN G A,et al.Prediction of guidewire-induced aortic deformations during EVAR:a finite element and in vitro study[J].Frontiers in Physiology,2023,14:1098867.

[4] LI M X,MA T,CAI Y H,et al.Numerical simulation of the distal stent graft-induced new entry after TEVAR[J].International Journal for Numerical Methods in Biomedical Engineering,2024,40(5):e3819.

[5] SHAHBAZIAN N,DOYLE M G,FORBES T L,et al.A modeling framework for computational simulations of thoracic endovascular aortic repair[J].International Journal for Numerical Methods in Biomedical Engineering,2023,39(4):e3578.

[6] DERYCKE L,DE ROUX Q,MONGARDON N,et al.Hypnosis during endovascular abdominal aortic aneurysm repair[J].Journal of Clinical Medicine,2024,13(4):979.

[7] KOBAYASHI K,YAMASHITA A,KURODA Y,et al.Unexpected bare metal stent migration associated with aortic remodeling after PETTICOAT technique for aortic dissection[J].Journal of Endovascular Therapy,2023,30(2):302-306.

[8] LIU Z C,CHEN G F,ONG C,et al.Multi-objective design optimization of stent-grafts for the aortic arch[J].Materials & Design,2023,227:111748.

[9] YAN S J,SONG C L,SI Y,et al.Design of non-equal-strut stent hoops for structural optimization of thoracic aortic stent-grafts[J].Minimally Invasive Therapy & Allied Technologies,2022,31(1):58-71.

[10] XIE A K,HAO J T,DUAN F,et al.Mechanical analysis of radial performance in biodegradable polymeric vascular stents manufactured using micro-injection molding[J].Journal of the Mechanical Behavior of Biomedical Materials,2024,150:106362.

[11] HU X,LIU Q W,CHEN L,et al.Modified theoretical model predicts radial support capacity of polymer braided stents[J].Computer Methods and Programs in Biomedicine,2024,246:108063.

[12] ZHOU X C,YANG F,GONG X Y,et al.Development of new endovascular stent-graft system for type B thoracic aortic dissection with finite element analysis and experimental verification[J].Journal of Materials Science & Technology,2019,35(11):2682-2692.

[13] 邹秋华,林婧,关国平,等.一体化编织型血管覆膜支架的压缩性能[J].东华大学学报(自然科学版),2017,43(1):27-30.ZOU Q H,LIN J,GUAN G P,et al.Compression performance of braided integrated stent grafts[J].Journal of Donghua University(Natural Science),2017,43(1):27-30.

[14] CONCANNON J,MOERMAN K M,HYNES N,et al.Influence of shape-memory stent grafts on local aortic compliance[J].Biomechanics and Modeling in Mechanobiology,2021,20(6):2373-2392.

[15] KIANPOUR G,BAGHERI R,POURJAVADI A,et al.Synergy of titanium dioxide nanotubes and polyurethane properties for bypass graft application:excellent flexibility and biocompatibility[J].Materials & Design,2022,215:110523.

[16] 张慧媛,汪梦娇,李超婧,等.PPDO/可降解铁混合编织血管支架的结构设计及力学性能[J].东华大学学报(自然科学版),2023,49(2):9-16.ZHANG H Y,WANG M J,LI C J,et al.Structural design and mechanical properties of PPDO/ biodegradable iron mix braided vascular stent[J].Journal of Donghua University(Natural Science),2023,49(2):9-16.

[17] 王盛章,蔡云寒,孟庄源,等.支架植入的有限元仿真及其在出血型心脑血管疾病手术规划中的应用[J].生物医学工程学杂志,2020,37(6):974-982.WANG S Z,CAI Y H,MENG Z Y,et al.Finite element simulation of stent implantation and its applications in the interventional planning for hemorrhagic cardio-cerebrovascular diseases[J].Journal of Biomedical Engineering,2020,37(6):974-982.

[18] COCHENNEC F,BECQUEMIN J P,DESGRANGES P,et al.Limb graft occlusion following EVAR:clinical pattern,outcomes and predictive factors of occurrence[J].European Journal of Vascular and Endovascular Surgery,2007,34(1):59-65.

[19] SENF B,VON SACHSEN S,NEUGEBAUER R,et al.The effect of stent graft oversizing on radial forces considering nitinol wire behavior and vessel characteristics[J].Medical Engineering & Physics,2014,36(11):1480-1486.

[20] DEMANGET N,DUPREY A,BADEL P,et al.Finite element analysis of the mechanical performances of 8 marketed aortic stent-grafts[J].Journal of Endovascular Therapy,2013,20(4):523-535.

[21] KLEINSTREUER C,LI Z,BASCIANO C A,et al.Computational mechanics of nitinol stent grafts[J].Journal of Biomechanics,2008,41(11):2370-2378.

[22] 关颖,林婧,关国平,等.覆膜支架的金属支架结构设计对其顺应性的影响[J].东华大学学报(自然科学版),2019,45(3):370-374.GUAN Y,LIN J,GUAN G P,et al.Influence of structural design of metal stent on the compliance of stent graft[J].Journal of Donghua University(Natural Science),2019,45(3):370-374.

[23] 于凯,谷雪莲,胡方遒,等.波峰数目对Z型覆膜支架生物力学性能影响[J].医用生物力学,2017,32(2):115-121.YU K,GU X L,HU F Q,et al.Effects of strut numbers on biomechanical properties of Z-shaped stent-grafts[J].Journal of Medical Biomechanics,2017,32(2):115-121.

[24] AZAOUZI M,MAKRADI A,BELOUETTAR S.Deployment of a self-expanding stent inside an artery:a finite element analysis[J].Materials & Design,2012,41:410-420.

[25] 孙世博,刘晓凤,李金奉,等.一体化编织食管覆膜支架制备及力学性能[J].东华大学学报(自然科学版),2021,47(6):37-43.SUN S B,LIU X F,LI J F,et al.Preparation and mechanical performance of braided hybrid esophageal stent grafts[J].Journal of Donghua University(Natural Science),2021,47(6):37-43.

[26] 刘宗超,吴林辉,陈贡发.几何参数对主动脉支架生物力学性能的影响[J].机械工程学报,2021,57(11):112-119.LIU Z C,WU L H,CHEN G F.Influences of geometrical parameters on mechanical properties of aortic stent-grafts[J].Journal of Mechanical Engineering,2021,57(11):112-119.

[27] PRAVEEN KUMAR G,CUI F S,DANPINID A,et al.Design and finite element-based fatigue prediction of a new self-expandable percutaneous mitral valve stent[J].Computer-Aided Design,2013,45(10):1153-1158.

[28] 叶锟,张弢.冠脉支架设计的材料适应性研究[J].医用生物力学,2023,38(6):1211-1218.YE K,ZHANG T.Material adaptability of coronary stent design[J].Journal of Medical Biomechanics,2023,38(6):1211-1218.

[29] RIBEIRO N S,FOLGADO J,RODRIGUES H C.Surrogate-based visualization and sensitivity analysis of coronary stent performance:a study on the influence of geometric design[J].International Journal for Numerical Methods in Biomedical Engineering,2018,34(10):e3125.

[30] RAGHAVAN M L,WEBSTER M W,VORP D A.Ex vivo biomechanical behavior of abdominal aortic aneurysm:assessment using a new mathematical model[J].Annals of Biomedical Engineering,1996,24(5):573-582.

基本信息:

DOI:10.19886/j.cnki.dhdz.2024.0216

中图分类号:R318.08

引用信息:

[1]陈庆明,刘肖燕,柳东辰,等.覆膜支架的金属支架结构设计对其力学性能的影响[J].东华大学学报(自然科学版),2025,51(04):124-132.DOI:10.19886/j.cnki.dhdz.2024.0216.

基金信息:

国家自然科学基金项目(61903078)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索