nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 06, v.51 198-205
促血管生成GelMA水凝胶伤口敷料的制备及其3D打印性能
基金项目(Foundation): 国家重点研发计划(2023YFB3813002,2023YFB3813000)
邮箱(Email): rancao@dhu.edu.cn,caoranaw@sina.com;
DOI: 10.19886/j.cnki.dhdz.2025.0127
摘要:

水凝胶材料因其优异的生物相容性和可调控的力学性能,在定制化烧伤创面敷料领域展现出广阔的应用前景。基于甲基丙烯酰胺改性明胶(GelMA)优良的生物相容性,开发一种兼具促血管生成功能和3D打印特性的多功能水凝胶伤口敷料。评估不同接枝率GelMA水凝胶的溶胀和降解性能时发现,接枝率越高则溶胀率越小,降解速率越慢。接枝率为60%的GelMA水凝胶(GM60)具有最优的综合性能,可以同步实现药物的可控释放和3D打印的个性化定制。负载2-脱氧-D-核糖(2dDR)的GM60水凝胶在酶降解24 h内药物释放率为45%,体外成管试验进一步证实2dDR的添加显著促进了血管网络的形成、血管分枝数量上升和血管节点数增加。GelMA水凝胶可为不规则烧伤创面的个性化治疗提供新的策略。

Abstract:

Hydrogels are highly promising for customizable burn wound dressings due to their superior biocompatibility and customizable mechanical properties. A multifunctional hydrogel wound dressing with pro-angiogenic properties and 3D printability was developed using methacrylamide-modified gelatin(GelMA), with its superior biocompatibility. By evaluating the swelling properties and degradation of GelMA hydrogels with different grafting rates, we identified the higher the grafting ratio, the smaller the swelling ratio and the slower the degradation rate. GM60(GelMA with a 60% grafting rate) as the optimal formulation exhibited the best performance enabling controlled drug release and customization for 3D printing. GM60 hydrogel loaded with 2-deoxy-D-ribose(2dDR) exhibited a 45% drug release rate within 24 h by enzymatic degradation. In vitro tube formation assays further confirmed its significant promotion of vascular network formation, with a marked increase in both vascular branch numbers and junctional points. These findings demonstrate that the GelMA hydrogel system presents a novel strategy for personalized treatment of irregular burn wounds, offering promising potential for promoting angiogenesis and tissue regeneration in complex wound healing scenarios.

参考文献

[1] QIAN Y,ZHENG Y,JIN J,et al.Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold [J].Advanced Materials,2022,34(29):e2200521.

[2] YANG Y,ZHAO X,YU J,et al.Bioactive skin-mimicking hydrogel band-aids for diabetic wound healing and infectious skin incision treatment [J].Bioactive Materials,2021,6(11):3962-3975.

[3] GONG Y,WANG P,CAO R,et al.Exudate absorbing and antimicrobial hydrogel integrated with multifunctional curcumin-loaded magnesium polyphenol network for facilitating burn wound healing [J].ACS Nano,2023,17(22):22355-22370.

[4] JIA B Y,HAO T T,CHEN Y N,et al.Mussel-inspired tissue adhesive composite hydrogel with photothermal and antioxidant properties prepared from pectin for burn wound healing [J].International Journal of Biological Macromolecules,2024,270:132436.

[5] LI J Y,LI Y T,GUO C L,et al.Development of quercetin loaded silk fibroin/soybean protein isolate hydrogels for burn wound healing [J].Chemical Engineering Journal,2024,481:148458.

[6] HUANG R Y,DING D L,HUANG C Y,et al.Multidimensional integrated architectonics for hierarchical hydrogels with enhanced thermal conductivity for effective burn healing [J].ACS Applied Materials & Interfaces,2025,17(7):11085-11099.

[7] ALI N,ARSHAD R,KOUSAR S,et al.Advanced wound healing:The synergy of nature and nanotechnology [J].Journal of Drug Delivery Science and Technology,2025,105:106579.

[8] DHAND A P,DAVIDSON M D,BURDICK J A.Lithography-based 3D printing of hydrogels [J].Nature Reviews Bioengineering,2025,3:108-125.

[9] ZHAO J Y,ZHU H Q,XU T L,et al.Self-healing oxidized dextran/sodium alginate hydrogel dressing with hemostatic activity speeds up wound healing in burn injuries [J].ACS Applied Materials & Interfaces,2025,17(2):2940-2951.

[10] BANIASADI H,ABIDNEJAD R,FAZELI M,et al.Innovations in hydrogel-based manufacturing:a comprehensive review of direct ink writing technique for biomedical applications [J].Advances in Colloid and Interface Science,2024,324:103095.

[11] PITA-VILAR M,CONCHEIRO A,ALVAREZ-LORENZO C,et al.Recent advances in 3D printed cellulose-based wound dressings:a review on in vitro and in vivo achievements [J].Carbohydrate Polymers,2023,321:121298.

[12] MAIHEMUTI A,ZHANG H,LIN X,et al.3D-printed fish gelatin scaffolds for cartilage tissue engineering [J].Bioactive Materials,2023,26:77-87.

[13] XIA Y H,YAN S,WEI H D,et al.Multifunctional porous bilayer artificial skin for enhanced wound healing [J].ACS Applied Materials & Interfaces,2024,16(27):34578-34590.

[14] TIAN K,BAE J,BAKARICH S E,et al.3D printing of transparent and conductive heterogeneous hydrogel-elastomer systems [J].Advanced Materials,2017,29(10):1604827.

[15] HAN X X,SAENGOW C,JU L,et al.Exosome-coated oxygen nanobubble-laden hydrogel augments intracellular delivery of exosomes for enhanced wound healing [J].Nature Communications,2024,15(1):3435.

[16] DE SOUZA A,MARTIGNAGO C C S,SANTO G D E,et al.3D printed wound constructs for skin tissue engineering:a systematic review in experimental animal models [J].Journal of Biomedical Materials Research Part B,Applied Biomaterials,2023,111(7):1419-1433.

[17] DIKICI S,YAR M,BULLOCK A J,et al.Developing wound dressings using 2-deoxy- D-ribose to induce angiogenesis as a backdoor route for stimulating the production of vascular endothelial growth factor [J].International Journal of Molecular Sciences,2021,22(21):11437.

[18] TEOH J H,MOZHI A B,SUNIL V,et al.3D printing personalized,photocrosslinkable hydrogel wound dressings for the treatment of thermal burns [J].Advanced Functional Materials,2021,31(48):2105932.

[19] ZHOU X,YU X Z,YOU T T,et al.3D printing-based hydrogel dressings for wound healing [J].Advanced Science,2024,11(47):e2404580.

[20] LIANG Y P,HE J H,GUO B L.Functional hydrogels as wound dressing to enhance wound healing [J].ACS Nano,2021,15(8):12687-12722.

[21] BRUMBERG V,ASTRELINA T,MALIVANOVA T,et al.Modern wound dressings:hydrogel dressings [J].Biomedicines,2021,9(9):1235.

[22] WANG S Q,ZHENG H,ZHOU L,et al.Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria [J].Nano Letters,2020,20(7):5149-5158.

[23] YAR M,SHAHZADI L,MEHMOOD A,et al.Deoxy-sugar releasing biodegradable hydrogels promote angiogenesis and stimulate wound healing [J].Materials Today Communications,2017,13:295-305.

[24] GENG Y N,LIU T X,ZHAO M L,et al.Silk fibroin/polyacrylamide-based tough 3D printing scaffold with strain sensing ability and chondrogenic activity [J].Composites Part B:Engineering,2024,271:111173.

[25] ZOU S Z,FAN S N,OLIVEIRA A L,et al.3D printed gelatin scaffold with improved shape fidelity and cytocompatibility by using antheraea pernyi silk fibroin nanofibers [J].Advanced Fiber Materials,2022,4(4):758-773.

基本信息:

DOI:10.19886/j.cnki.dhdz.2025.0127

中图分类号:R318.08;TQ427.26

引用信息:

[1]魏慧丹,吴双,曹冉.促血管生成GelMA水凝胶伤口敷料的制备及其3D打印性能[J].东华大学学报(自然科学版),2025,51(06):198-205.DOI:10.19886/j.cnki.dhdz.2025.0127.

基金信息:

国家重点研发计划(2023YFB3813002,2023YFB3813000)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索