nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 01, v.50 11-19
用于乳腺肿瘤细胞三维培养的纤维-水凝胶复合支架的制备及表征
基金项目(Foundation): 国家自然科学基金青年科学基金项目(81802569)
邮箱(Email):
DOI: 10.19886/j.cnki.dhdz.2022.0361
摘要:

从力学性能和组成成分两方面还原乳腺肿瘤细胞的生长环境,开发了一种负载富血小板血浆的纤维-水凝胶复合结构支架。通过检测支架的元素组成和化学结构,确认支架中各组分的成功负载,并利用扫描电镜、溶胀测试和水接触角测试表征了支架的表面形貌和理化性能。研究表明:复合支架具有适用于物质传输的孔隙和利于细胞黏附的表面性能;加入纤维显著提高了水凝胶的力学性能,且复合支架具有与乳腺肿瘤组织接近的弹性模量((4.79±0.45)kPa);与二维(2D)培养和无纤维的水凝胶支架相比,复合支架上培养的乳腺肿瘤细胞增殖能力提高了33.1%,显示出细胞聚集成球的特性,并对化疗药物显示出更低的敏感性。复合支架有助于肿瘤学体外研究和预测抗肿瘤药物疗效。

Abstract:

A fiber-hydrogel composite scaffold loaded with platelet-rich plasma was developed to simulate the microenvironment of breast tumor using mechanical and composition cues. The elemental composition and chemical structure were tested to confirm the successful loading of each component in the scaffold. The surface morphology and physicochemical properties of the scaffolds were characterized using scanning electron microscopy, swelling test, and water contact angle test. The study demonstrates that: the composite scaffold has appropriate pores for mass transfer as well as surface characteristics for cell adhesion. The fibers significantly improve the mechanical properties of the hydrogel, and the composite scaffold has similar mechanical properties to the breast tumor((4.79±0.45)kPa). Tumor cells cultured within this scaffold have higher proliferation capacities than 2D culture by a 33.1% improvement. The cells in the composite scaffold show the ability to assemble into spheres, and less sensitive to chemotherapy when compared with 2D culture and fiber-free. It is anticipated that this composite scaffold will be helpful for in vitro oncology studies and antitumor drug efficacy prediction.

参考文献

[1] SUNG H,FERLAY J,SIEGEL R L,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].CA:A Cancer Journal for Clinicians,2021,71(3):209-249.

[2] FERNANDO K,KWANG L G,LIM J T C,et al.Hydrogels to engineer tumor microenvironments in vitro [J].Biomaterials Science,2021,9(7):2362-2383.

[3] PASZEK M J,ZAHIR N,JOHNSON K R,et al.Tensional homeostasis and the malignant phenotype [J].Cancer Cell,2005,8(3):241-254.

[4] HABANJAR O,DIAB-ASSAF M,CALDEFIE-CHEZET F,et al.3D cell culture systems:tumor application,advantages,and disadvantages [J].International Journal of Molecular Sciences,2021,22(22):12200.

[5] FONTOURA J C,VIEZZER C,DOS SANTOS F G,et al.Comparison of 2D and 3D cell culture models for cell growth,gene expression and drug resistance [J].Materials Science and Engineering C,2020,107:110264.

[6] LAW A M K,RODRIGUEZ DE LA FUENTE L,GRUNDY T J,et al.Advancements in 3D cell culture systems for personalizing anti-cancer therapies [J].Frontiers in Oncology,2021,11:782766.

[7] THEOCHARIS A D,SKANDALIS S S,GIALELI C,et al.Extracellular matrix structure [J].Advanced Drug Delivery Reviews,2016,97:4-27.

[8] BANDZEREWICZ A,GADOMSKA-GAJADHUR A.Into the tissues:extracellular matrix and its arctificial substitutes:cell signalling mechanisms[J].Cells,2022,11(5):914.

[9] WANG M D,DU J T,LI M Y,et al.In situ forming double-crosslinked hydrogels with highly dispersed short fibers for the treatment of irregular woulds[J].Biomciterials Science,2023,11(7):2383-2394.

[10] HAN S S,NIE K X,LI J C,et al.3D electrospun nanofiber-based scaffolds:from preparations and properties to tissue regeneration applications [J].Stem Cells International,2021,2021:8790143.

[11] PARK K M,LEWIS D,GERECHT S.Bioinspired hydrogels to engineer cancer microenvironments [J].Annual Review of Biomedical Engineering,2017,19:109-133.

[12] DOS SANTOS K S,OLIVEIRA L T,DE LIMA FONTES M,et al.Alginate-Based 3D A549 Cell Culture Model to Study Paracoccidioides Infection[J].Journal of Fungi,2023,9(6):634.

[13] NASRI-NASRABADI B,KAYNAK A,HEIDARIAN P,et al.Sodium alginate/magnesium oxide nanocomposite scaffolds for bone tissue engineering [J].Polymers for Advanced Technologies,2018,29(9):2553-2559.

[14] LUO H L,ZHANG Y,GAN D Q,et al.Incorporation of hydroxyapatite into nanofibrous PLGA scaffold towards improved breast cancer cell behavior [J].Materials Chemistry and Physics,2019,226:177-183.

[15] KHORSHIDI S,KARKHANEH A.Hydrogel/fiber conductive scaffold for bone tissue engineering [J].Journal of Biomedical Materials Research Part A,2018,106(3):718-724.

[16] ZHANG L,MIAO H Y,WANG D Z,et al.Pancreatic extracellular matrix and platelet-rich plasma constructing injectable hydrogel for pancreas tissue engineering [J].Artificial Organs,2020,44(12):e532-e551.

[17] UPPAL R,MEDAROVA Z,FARRAR C T,et al.Molecular imaging of fibrin in a breast cancer xenograft mouse model [J].Investigative Radiology,2012,47(10):553-558.

[18] 李晓婧.动/静态条件下串珠及串晶结构对成纤维细胞行为的影响[D].上海:东华大学,2022.LI X J.Effect of bead-on-string and shish-kebab structures on fibrobla behavior under dyna mic/static conditions[D].Shanghai:Donghua University,2022.

[19] LI D W,SUN H Z,JIANG L M,et al.Enhanced biocompatibility of PLGA nanofibers with gelatin/nano-hydroxyapatite bone biomimetics incorporation [J].ACS Applied Materials&Interfaces,2014,6(12):9402-9410.

[20] SUO A L,XU W J,WANG Y P,et al.Dual-degradable and injectable hyaluronic acid hydrogel mimicking extracellular matrix for 3D culture of breast cancer MCF-7 cells [J].Carbohydrate Polymers,2019,211:336-348.

[21] BASTIDAS J G,MAURMANN N,DA SILVEIRA M R,et al.Development of fibrous PLGA/fibrin scaffolds as a potential skin substitute [J].Biomedical Materials,2020,15(5):055014.

[22] YUN Y J,WU H W,GAO J,et al.Facile synthesis of Ca2+-crosslinked sodium alginate/graphene oxide hybrids as electro- and pH-responsive drug carrier [J].Materials Science and Engineering:C,2020,108:110380.

[23] PEREZ R A,MESTRES G.Role of pore size and morphology in musculo-skeletal tissue regeneration [J].Materials Scienceand Engineering:C,2016,61:922-939.

[24] LIU X X,FU S J,JIAO Y J,et al.A loofah-inspired scaffold with enhanced mimicking mechanics and tumor cells distribution for in vitro tumor cell culture platform [J].Biomaterials Advances,2022,135:112672.

[25] VAN OSS C J.Surface properties of fibrinogen and fibrin [J].Journal of Protein Chemistry,1990,9(4):487-491.

[26] Lü K N,ZHU J J,ZHENG S S,et al.Evaluation of inhibitory effects of geniposide on a tumor model of human breast cancer based on 3D printed Cs/Gel hybrid scaffold [J].Materials Science and Engineering:C,2021,119:111509.

[27] 沈阳,王贵学,沈楠,等.亲/疏水性材料表面对细胞体外生物学行为影响的研究进展 [J].生物医学工程学杂志,2011,28(6):1237-1241.SHEN Y,WANG G X,SHEN N,et al.Advances of research of hydrophilic/hydrophobic surface effect on cell biologic behaviors in vitro[J].Journal of Biomedical Engineering,2011,28(6):1237-1241.

[28] JORDAN A M,KIM S E,VAN DE VOORDE K,et al.In situ fabrication of fiber reinforced three-dimensional hydrogel tissue engineering scaffolds [J].ACS Biomaterials Science & Engineering,2017,3(8):1869-1879.

[29] CASTILHO M,HOCHLEITNER G,WILSON W,et al.Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds [J].Scientific Reports,2018,8(1):1245.

[30] BRAY L J,BINNER M,HOLZHEU A,et al.Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis [J].Biomaterials,2015,53:609-620.

[31] DEL BUFALO F,MANZO T,HOYOS V,et al.3D modeling of human cancer:a PEG-fibrin hydrogel system to study the role of tumor microenvironment and recapitulate the in vivo effect of oncolytic adenovirus [J].Biomaterials,2016,84:76-85.

[32] JABBARI E,SARVESTANI S K,DANESHIAN L,et al.Optimum 3D matrix stiffness for maintenance of cancer stem cells is dependent on tissue origin of cancer cells [J].PLoS One,2015,10(7):e0132377.

[33] PAL M,CHEN H Z,LEE B H,et al.Epithelial-mesenchymal transition of cancer cells using bioengineered hybrid scaffold composed of hydrogel/3D-fibrous framework [J].Scientific Reports,2019,9(1):8997.

[34] 王玮.PLGA/纤维蛋白凝胶复合支架的制备及其用于软骨再生的研究[D].杭州:浙江大学,2010.WANG W.Fabrication of fibrin gel filled PLGA sponge for cartilage regeneration[D].Hangzhou:Zhejiang University,2010.

[35] KHORSHIDI S,KARKHANEH A.A review on gradient hydrogel/fiber scaffolds for osteochondral regeneration [J].Journal of Tissue Engineering and Regenerative Medicine,2018,12(4):e1974-e1990.

[36] Lü Y G,WANG H J,LI G,et al.Three-dimensional decellularized tumor extracellular matrices with different stiffness as bioengineered tumor scaffolds [J].Bioactive Materials,2021,6(9):2767-2782.

基本信息:

DOI:10.19886/j.cnki.dhdz.2022.0361

中图分类号:R318.08;TB332

引用信息:

[1]傅思佳,刘星星,胡梦博等.用于乳腺肿瘤细胞三维培养的纤维-水凝胶复合支架的制备及表征[J],2024,50(01):11-19.DOI:10.19886/j.cnki.dhdz.2022.0361.

基金信息:

国家自然科学基金青年科学基金项目(81802569)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索