nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.51 26-39
纺织基电磁超材料的发展及研究现状
基金项目(Foundation): 国家自然科学基金面上项目(52273054)
邮箱(Email): fjxu@dhu.edu.cn;
DOI: 10.19886/j.cnki.dhdz.2024.0204
摘要:

电磁超材料是一种通过人工微结构在亚波长尺度内精确调控特定频段下所需的电磁参数的复合材料,可通过这些结构的周期性排列和尺寸调整,操控电磁波的传播方式,具有负介电常数、负磁导率等特征。随着柔性电子的发展,学界研究重心逐渐从刚性材料转向柔性材料,其中纺织品因其柔软、轻便、透气、耐磨等优势,成为柔性电磁超材料的重要载体。综述了纺织基电磁超材料的主要加工工艺,包括机织、针织、刺绣、印刷与胶黏等,并总结了其在纺织天线、电磁吸波器、生物传感器和能量收集装置等领域的典型应用。在实际应用中,该类材料仍面临诸如电磁性能稳定性差、结构设计与加工工艺难以协同优化以及多功能集成难度大等挑战。未来应聚焦于高性能纤维材料、智能织造技术以及多功能一体化设计,以期推动纺织基电磁超材料在军事、航空航天、通信、电子设备中的深度应用。

Abstract:

Electromagnetic metamaterials are composite materials that achieve precise control over electromagnetic parameters at specific frequency bands through artificially designed microstructures on a subwavelength scale. By adjusting the periodic arrangement and dimensions of these structures, the propagation of electromagnetic waves can be manipulated, exhibiting unconventional properties such as negative permittivity and negative permeability. With the rapid development of flexible electronics, research has gradually shifted from rigid to flexible materials. Among them, textiles have emerged as promising substrates for flexible electromagnetic metamaterials due to their softness, light weight, breathability, and wear resistance. This review summarizes the main fabrication techniques of textile-based electromagnetic metamaterials, including weaving, knitting, embroidery, printing, and adhesive bonding, and highlights their representative applications in textile antennas, electromagnetic absorbers, biosensors, and energy harvesting devices. Despite the progress made, several challenges remain, such as poor electromagnetic stability under real-world conditions, difficulties in coordinating structural design with textile processing, and limitations in multifunctional integration. Future research should focus on the development of high-performance functional fibers, intelligent textile manufacturing technologies, and integrated multifunctional designs, with the aim of promoting the application of textile-based electromagnetic metamaterials in military, aerospace, communications, and electronic devices.

参考文献

[1] 尉易庆.基于电磁超材料的射频无线能量收集技术研究[D].太原:中北大学,2024.WEI Y Q.RF and wireless energy harvesting technology based on electromagnetic metamaterials[D].Taiyuan:North University of China,2024.

[2] ORAZBAYEV B,MOHAMMADI ESTAKHRI N,ALù A,et al.Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves[J].Advanced Optical Materials,2016,5(1):1600606.

[3] LANDY N I,SAJUYIGBE S,MOCK J J,et al.Perfect metamaterial absorber[J].Physical Review Letters,2008,100(20):207402.

[4] LIAO Y H,LIN Y S.Reconfigurable Terahertz metamaterial using split-ring meta-atoms with multifunctional electromagnetic characteristics[J].Applied Sciences-Basel,2020,10(15):5267.

[5] YANG Y H,WANG H P,YU F X,et al.A metasurface carpet cloak for electromagnetic,acoustic and water waves[J].Scientific Reports,2016,6:20219.

[6] LI X W,YU X,CHUA J W,et al.Microlattice metamaterials with simultaneous superior acoustic and mechanical energy absorption[J].Small,2021,17(24):e2100336.

[7] LI Y,YU G K,LIANG B,et al.Three-dimensional ultrathin planar lenses by acoustic metamaterials[J].Scientific Reports,2014,4:6830.

[8] CANBAZOGLU F M,VEMURI K P,BANDARU P R.Estimating interfacial thermal conductivity in metamaterials through heat flux mapping[J].Applied Physics Letters,2015,106(14):143904.

[9] GUO Y,CORTES C L,MOLESKY S,et al.Broadband super-Planckian thermal emission from hyperbolic metamaterials[J].Applied Physics Letters,2012,101(13):131106.

[10] HAN T C,BAI X,GAO D L,et al.Experimental demonstration of a bilayer thermal cloak[J].Physical Review Letters,2014,112(5):054302.

[11] CORKERY R W,TYRODE E C.On the colour of wing scales in butterflies:iridescence and preferred orientation of single gyroid photonic crystals[J].Interface Focus,2017,7(4):20160154.

[12] YE M L,GAO L,LI H.A design framework for gradually stiffer mechanical metamaterial induced by negative Poisson’s ratio property[J].Materials & Design,2020,192:108751.

[13] KADIC M,BüCKMANN T,STENGER N,et al.On the practicability of pentamode mechanical metamaterials[J].Applied Physics Letters,2012,100(19):191901.

[14] 王霞,张冉冉,吕浩,等.超材料的发展及研究现状[J].青岛科技大学学报(自然科学版),2016,37(2):119-126.WANG X,ZHANG R R,Lü H,et al.Development and research actuality of meta-materials[J].Journal of Qingdao University of Science and Technology (Natural Science Edition),2016,37(2):119-126.

[15] VESELAGO V G.Electrodynamics of substances with simultaneously negative and[J].Uspekhi Fizicheskikh Nauk,1967,92(7):517.

[16] 张治蓝.基于电磁超材料的无线电能传输效率增强研究[D].武汉:湖北工业大学,2016.ZHANG Z L.Study of efficiency enhancement of wireless power transfer based on electromagnetic metamaterial[D].Wuhan:Hubei University of Technology,2016.

[17] PENDRY J B.Negative refraction makes a perfect lens[J].Physical Review Letters,2000,85(18):3966.

[18] MARTINEZ A,MIGUEZ H,GRIOL A,et al.Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens[J].Physical Review B,2004,69(16):165119.

[19] PENDRY J B,HOLDEN A J,ROBBINS D J,et al.Magnetism from conductors and enhanced nonlinear phenomena[J].IEEE Transactions on Microwave Theory and Techniques,1999,47(11):2075-2084.

[20] SCHURIG D,MOCK J J,SMITH D R.Electric-field-coupled resonators for negative permittivity metamaterials[J].Applied Physics Letters,2006,88(4):041109.

[21] LIM S,CALOZ C,ITOH T.Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth[J].IEEE Transactions on Microwave Theory and Techniques,2004,52(12):2678-2690.

[22] 刘鹏.基于电磁超材料的高性能天线技术研究[D].西安:西安电子科技大学,2023.LIU P.Design of high-performance antennas based on electromagnetic metamaterials[D].Xi’an:Xidian University,2023.

[23] LAMB H.On group-velocity[J].Proceedings of the London Mathematical Society,1904,s2-1(1):473-479.

[24] MANDELSHTAM L.Lectures on some problems of the theory of oscillations (1944)[J].Complete Collection of Works,1950,5:428-467.

[25] SIVUKHIN D.The energy of electromagnetic waves in dispersive media[J].Optika i Spektroskopiya,1957,3(4):308-312.

[26] VESELAGO V G.The electrodynamics of substances with simultaneously negative values of ε and μ[J].Soviet Physics Uspekhi,1968,10(4):509-514.

[27] PENDRY J B,HOLDEN A J,STEWART W J,et al.Extremely low frequency plasmons in metallic mesostructures[J].Physical Review Letters,1996,76(25):4773-4776.

[28] SMITH D R,PADILLA W J,VIER D C,et al.Composite medium with simultaneously negative permeability and permittivity[J].Physical Review Letters,2000,84(18):4184-4187.

[29] SHELBY R A,SMITH D R,SCHULTZ S.Experimental verification of a negative index of refraction[J].Science,2001,292(5514):77-79.

[30] SMITH D R,VIER D C,KOSCHNY T,et al.Electromagnetic parameter retrieval from inhomogeneous metamaterials[J].Physical Review E:Statistical,Nonlinear,and Soft Matter Physics,2005,71(3):036617.

[31] PENDRY J B,SCHURIG D,SMITH D R.Controlling electromagnetic fields[J].Science,2006,312(5781):1780-1782.

[32] SCHURIG D,MOCK J J,JUSTICE B J,et al.Metamaterial electromagnetic cloak at microwave frequencies[J].Science,2006,314(5801):977-980.

[33] CHENG Q,CUI T J,JIANG W X,et al.An omnidirectional electromagnetic absorber made of metamaterials[J].New Journal of Physics,2010,12(6):063006.

[34] YU N F,GENEVET P,KATS M A,et al.Light propagation with phase discontinuities:generalized laws of reflection and refraction[J].Science,2011,334(6054):333-337.

[35] DELLA GIOVAMPAOLA C,ENGHETA N.Digital metamaterials[J].Nature Materials,2014,13(12):1115-1121.

[36] CUI T J,QI M Q,WAN X,et al.Coding metamaterials,digital metamaterials and programmable metamaterials[J].Light:Science & Applications,2014,3(10):e218-e218.

[37] SHEN X P,CUI T J,MARTIN-CANO D,et al.Conformal surface plasmons propagating on ultrathin and flexible films[J].Proceedings of the National Academy of Sciences of the United States of America,2012,110(1):40-45.

[38] JIANG Q,XIANG C J,LUO Y,et al.Design and X-band electromagnetic response of single negative metacomposite containing periodic curved co-based ferromagnetic microwires[J].Journal of Materials Research and Technology,2020,9(3):4593-4603.

[39] JIANG Q,XIANG C J,LUO Y,et al.Textile structured metacomposites with tailorable negative permittivity under X and Ku band[J].Materials & Design,2020,185:108270.

[40] WANG P,HU R,HUANG X T,et al.Terahertz chiral metamaterials enabled by textile manufacturing[J].Advanced Materials,2022,34(16):e2110590.

[41] 郭秋晨,龙海如.不同材料导电纱线针织柔性传感器的传感性能[J].东华大学学报(自然科学版),2017,43(6):791-797.GUO Q C,LONG H R.Sensing properties of knitted flexible sensors with different types of conductive yarns[J].Journal of Donghua University (Natural Science),2017,43(6):791-797.

[42] CARTER M J,RESNECK L,RA’DI Y,et al.Flat-knit,flexible,textile metasurfaces[J].Advanced Materials,2024,36(32):2312087.

[43] JIANG Q,DUAN J M,UDDIN A,et al.A waffle structured composite for RCS reduction via absorption and scattering mechanisms[J].Materials & Design,2023,226:111650.

[44] ZHANG Y,ZHU Y Y,ZHENG S H,et al.Ink formulation,scalable applications and challenging perspectives of screen printing for emerging printed microelectronics[J].Journal of Energy Chemistry,2021,63:498-513.

[45] 蒋利红,洪虹,胡吉永,等.纤维/纱线排列结构对丝网印刷织物电极电化学性能的影响[J].东华大学学报(自然科学版),2022,48(5):8-15.JIANG L H,HONG H,HU J Y,et al.Effect of fibers/yarns arrangement and structure on the electrochemical performance of screen-printed fabric electrodes[J].Journal of Donghua University (Natural Science),2022,48(5):8-15.

[46] SINGH G,SHEOKAND H,CHAUDHARY K,et al.Fabrication of a non-wettable wearable textile-based metamaterial microwave absorber[J].Journal of Physics D:Applied Physics,2019,52(38):385304.

[47] RAC-RUMIJOWSKA O,POKRYSZKA P,RYBICKI T,et al.Influence of flexible and textile substrates on frequency-selective surfaces (FSS)[J].Sensors,2024,24(5):1704.

[48] LEE D J,KIM H K,LIM S.Textile metamaterial absorber using screen printed chanel logo[J].Microwave and Optical Technology Letters,2017,59(6):1424-1427.

[49] VITAL D,BHARDWAJ S,VOLAKIS J L.Textile-based large area RF-power harvesting system for wearable applications[J].IEEE Transactions on Antennas and Propagation,2020,68(3):2323-2331.

[50] ALMIRALL O,FERNáNDEZ-GARCíA R,GIL I.Wearable metamaterial for electromagnetic radiation shielding[J].The Journal of The Textile Institute,2021,113(8):1586-1594.

[51] SHAH A,PATEL P.Suspended embroidered triangular e-textile broadband antenna loaded with shorting pins[J].AEU-International Journal of Electronics and Communications,2021,130:153573.

[52] GIL I,SEAGER R,FERNáNDEZ-GARCíA R.Embroidered metamaterial antenna for optimized performance on wearable applications[J].Physica Status Solidi (a) Applications and Materials Science,2018,215(21):1800377.

[53] YANG Y L,WANG J P,SONG C Y,et al.Electromagnetic shielding using flexible embroidery metamaterial absorbers:Design,analysis and experiments[J].Materials & Design,2022,222:111079.

[54] SHAMSURI AGUS A N S,SABAPATHY T,JUSOH M,et al.Combined RIS and EBG surfaces inspired meta-wearable textile MIMO antenna using viscose-wool felt[J].Polymers (Basel),2022,14(10):1989.

[55] KAJENSKI A L,KHUSHRUSHAHI S,STRACK G,et al.A comparison of wearable metasurfaces[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC),Orlando,FL,USA.IEEE,2023:2235-2239 9.

[56] CHEN H,LU W B,GENG M Y,et al.Fabric-based smart metasurface[J].Advanced Materials Technologies,2023,8(23):2301111.

[57] YANG Y L,SONG C Y,PEI R,et al.Design,characterization and fabrication of a flexible broadband metamaterial absorber based on textile[J].Additive Manufacturing,2023,69:103537.

[58] WERNER D H,JIANG Z H.Electromagnetics of body area networks:antennas,propagation,and RF systems[M].New York:John Wiley & Sons,2016.

[59] ABBASI M A B,NIKOLAOU S S,ANTONIADES M A,et al.Compact EBG-backed planar monopole for BAN wearable applications[J].IEEE Transactions on Antennas and Propagation,2017,65(2):453-463.

[60] SAEED S M,BALANIS C A,BIRTCHER C R,et al.Wearable flexible reconfigurable antenna integrated with artificial magnetic conductor[J].IEEE Antennas and Wireless Propagation Letters,2017,16:2396-2399.

[61] GAO G P,HU B,WANG S F,et al.Wearable circular ring slot antenna with EBG structure for wireless body area network[J].IEEE Antennas and Wireless Propagation Letters,2018,17(3):434-437.

[62] LAJEVARDI M E,KAMYAB M.Ultraminiaturized metamaterial-inspired SIW textile antenna for off-body applications[J].IEEE Antennas and Wireless Propagation Letters,2017,16:3155-3158.

[63] ALI U,ULLAH S,SHAFI M,et al.Design and comparative analysis of conventional and metamaterial-based textile antennas for wearable applications[J].International Journal of Numerical Modelling:Electronic Networks,Devices and Fields,2019,32(6):e2567.

[64] SINGH S,VERMA S.Printed compact asymmetric dual L-strip fed split-ring shaped EBG-based textile antenna for WBAN applications[J].Microwave and Optical Technology Letters,2020,62(12):3897-3904.

[65] YALDUZ H,TABARU T E,KILIC V T,et al.Design and analysis of low profile and low SAR full-textile UWB wearable antenna with metamaterial for WBAN applications[J].AEU-International Journal of Electronics and Communications,2020,126:153465.

[66] DAS G K,BASU S,MANDAL B,et al.Gain-enhancement technique for wearable patch antenna using grounded metamaterial[J].IET Microwaves,Antennas & Propagation,2020,14(15):2045-2052.

[67] HOSSAIN K,SABAPATHY T,JUSOH M,et al.A negative index nonagonal CSRR metamaterial-based compact flexible planar monopole antenna for ultrawideband applications using viscose-wool felt[J].Polymers,2021,13(16):2819.

[68] PARAMESWARI S,CHITRA C,UPADHYAYA T.Textile UWB antenna with metamaterial for healthcare monitoring[J].International Journal of Antennas and Propagation,2021,2021:5855626.

[69] PATHAN T,KARN R.A compact circular polarized metamaterial-inspired fabric antenna for WBAN applications[J].Microwave and Optical Technology Letters,2021,63(10):2651-2655.

[70] ?ELENK E,TOKAN N T.All-textile,washable metasurface antenna for WBAN/WLAN and mid-band 5G applications[C]//2021 13th International Conference on Electrical and Electronics Engineering (ELECO),Bursa,Turkey.IEEE,2021:305-309.

[71] HOSSAIN K,SABAPATHY T,JUSOH M,et al.Negative index metamaterial-based frequency-reconfigurable textile CPW antenna for microwave imaging of breast cancer[J].Sensors,2022,22(4):1626.

[72] EJAZ A,JABEEN I,KHAN Z U,et al.A high performance all-textile wearable antenna for wristband application[J].Micromachines,2023,14(6):1169.

[73] DOUHI S,EDDIAI A,IDIRI M,et al.Investigation of SAR reduction and gain enhancement using an all-textile antenna with metamaterial structure for wireless body area network applications[J].Materials Today:Proceedings,2023.

[74] LI W Z,ZHANG K,PEI R,et al.Three-dimensional woven structural electromagnetic composite metamaterial with lightweight,anti-delaminate and in-phase reflection properties[J].Composites Science and Technology,2024,255:110708.

[75] KHAJEH-KHALILI F,SHIRVANI P,NESHATI M H.Textile-based high-gain bow-tie antenna using metamaterials for medical applications[J].Engineering Reports,2024,6(11):e12949.

[76] ALKHALAF H Y,AHMAD M Y,RAMIAH H,et al.Metamaterial-based textile antenna for wearable medical applications[C]//International Conference for Innovation in Biomedical Engineering and Life Sciences.Cham:Springer Nature Switzerland,2022:158-168.

[77] LU X,WANG P,NIYATO D,et al.Wireless networks with RF energy harvesting:a contemporary survey[J].IEEE Communications Surveys and Tutorials,2015,17(2):757-789.

[78] TAK J,CHOI J.A wearable metamaterial microwave absorber[J].IEEE Antennas and Wireless Propagation Letters,2016,16:784-787.

[79] BAIT-SUWAILAM M M,ALMONEEF T S,ALOMAINY A.A wearable reconfigurable electromagnetic metamaterial absorber using artificial magnetic inclusions[C]//2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting,Atlanta,USA.IEEE,2019:1623-1624.

[80] SINGH G,BHARDWAJ A,SRIVASTAVA K V,et al.Perforated lightweight microwave metamaterial broadband absorber with discontinuous ground plane[J].Applied Physics A,2021,127(11):858.

[81] ERDEM E,YUZER A H.Textile-based 3D metamaterial absorber design for X-band application[J].Waves in Random and Complex Media,2022:1-10.

[82] AKARSU G,TAHER H,ZENGIN E B,et al.Development of ultra-wideband textile-based metamaterial absorber for mm-wave band applications[C]//2022 16th European Conference on Antennas and Propagation (EuCAP),Madrid,Spain.IEEE,2022:1-5.

[83] CELENK E,LYNCH C,TENTZERIS M M.An ultrawideband all-textile metamaterial absorber for Ku-,K-,and Ka-band applications[J].IEEE Antennas and Wireless Propagation Letters,2024,23(6):1789-1793.

[84] ZHAI M L,ZHANG T,PEI R,et al.A reflecting/absorbing dual-mode textile metasurface design[J].IEEE Antennas and Wireless Propagation Letters,2024,23(10):3043-3047.

[85] TIAN X,LEE P M,TAN Y J,et al.Wireless body sensor networks based on metamaterial textiles[J].Nature Electronics,2019,2(6):243-251.

[86] TIAN X,ZENG Q H,KURT S A,et al.Implant-to-implant wireless networking with metamaterial textiles[J].Nature Communications,2023,14(1):4335.

[87] TETIK E.Flexible metamaterial design based on wearable material for microwave energy harvesting[J].Bulletin of Materials Science,2022,45(4):178.

基本信息:

DOI:10.19886/j.cnki.dhdz.2024.0204

中图分类号:TB34

引用信息:

[1]周邦泽,韩绍坤,刘阳等.纺织基电磁超材料的发展及研究现状[J].东华大学学报(自然科学版),2025,51(02):26-39.DOI:10.19886/j.cnki.dhdz.2024.0204.

基金信息:

国家自然科学基金面上项目(52273054)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索