nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.51 143-151
极地船舶驾驶室不同送风方式对加速热风辅助电加热玻璃化霜的影响
基金项目(Foundation): 国家自然科学基金(52008078)
邮箱(Email): ziliy@dhu.edu.cn;
DOI: 10.19886/j.cnki.dhdz.2024.0402
摘要:

为保障极地船舶在冰区的航行安全、避免近距离碰撞,利用计算流体动力学(CFD)方法对我国某极地船舶驾驶室建模,以化霜率为评价指标,对比研究驾驶室中热风辅助电加热玻璃化霜的加速效应,明确两种典型送风方式(顶部球形喷口和地板条形风口)的化霜特性及不同送风参数(温度、送风量和角度)对化霜速率的影响规律。研究发现,两种热风辅助方式均显著加速船舶在极地的化霜,相比单纯电加热玻璃(1 700 W/m2),辅以球形喷口射流与条形风口送风可使化霜率提升超4倍,128 s时化霜率从12.57%提高至62%以上。但顶部球形喷口和地板条形风口送风在化霜特性上存在显著差异:前者呈初期打开局部视野迅速、整面化霜较慢的“快点慢面”特征;后者则表现出相反的“低开高走”化霜特性。增大送风量可明显加速化霜,尤其是对地板条形风口;调节送风角度可加快顶部球形喷口的化霜速率,但对地板条形风口影响甚微;送风温度的加速化霜效果有限。研究结果可为极地船舶驾驶室挡风玻璃的低电耗快速化霜提供重要参考。

Abstract:

To ensure polar vessel safety and prevent collisions in icy waters, a computational fluid dynamic(CFD) model of a Chinese polar vessel's pilothouse was developed, assessing the accelerated efficacy of hot-air-assisted electric-heated glass defrosting with defrosting rate. We analyzed two air supply methods(ceiling-mounted spherical nozzles and floor slot diffusers) across air supply temperature, volume, and angle. Both methods accelerated the defrosting rate in polar conditions. Compared to sole electric heating(1 700 W/m2), the two methods increased the defrosting rate by more than 4 times, reaching over 62% in 128 s from 12.57%. But there are notable differences in defrosting characteristics. The ceiling-mounted spherical nozzle air supply exhibited a “quick point, slow surface” defrosting characteristics, while the floor slot diffuser one exhibited a “slow start, fast finish” characteristics. Increasing air volume significantly accelerated defrosting rate, especially for floor slot diffusers. Optimizing air supply angles enhanced the rate for the ceiling-mounted spherical nozzle method, but had minimal effect on the floor slot diffuser method. The accelerated frosting impact of air temperature was limited. Findings can support the development of rapid, low-power windshield defrosting for pilothouse of future polar vessels.

参考文献

[1] KENNICUTT M C,BROMWICH D,LIGGETT D,et al.Sustained Antarctic research:a 21st century imperative[J].One Earth,2019,1(1):95-113.

[2] 刘顺林.中国极地考察40年进展与展望[J].极地研究,2024,36(3):317-328.LIU S L.The progress and prospect on the 40th anniversary of Chinese Arctic and Antarctic scientific expeditions[J].Chinese Journal of Polar Research,2024,36(3):317-328.

[3] QI X L,LI Z F,ZHAO C P,et al.Environmental impacts of Arctic shipping activities:a review[J].Ocean & Coastal Management,2024,247:106936.

[4] 陈显尧,蔡娣,毕瀚文,等.影响北极气候快速变化的关键物理机制[J].中国海洋大学学报(自然科学版),2024,54(10):76-82.CHEN X Y,CAI D,BI H W,et al.On the physics of Arctic climate rapid change[J].Periodical of Ocean University of China,2024,54(10):76-82.

[5] CHEN J L,KANG S C,WU A D,et al.Accessibility in key areas of the Arctic in the 21st mid-century[J].Advances in Climate Change Research,2023,14(6):896-903.

[6] 张羽,李岳阳,王敏.极地破冰船发展现状与趋势[J].舰船科学技术,2017,39(23):188-193.ZHANG Y,LI Y Y,WANG M.Overview and trend of the icebreakers[J].Ship Science and Technology,2017,39 (23):188-193.

[7] HILL B T.Ship collision with Iceberg database[C]//SNAME 7th International Conference and Exhibition on Performance of Ships and Structures in Ice.Banff,Alberta,Canada.2006.

[8] 谢强,陈海龙,章继峰.极地航行船舶及海洋平台防冰和除冰技术研究进展[J].中国舰船研究,2017,12(1):45-53.XIE Q,CHEN H L,ZHANG J F.Research progress of anti-icing/deicing technologies for polar ships and offshore platforms[J].Chinese Journal of Ship Research,2017,12(1):45-53.

[9] IceCube Neutrino Observatory.Antarctic weather:South Pole[EB/OL].https://icecube.wisc.edu/pole/weather/.

[10] 姚晋玮.基于Mask R-CNN的海冰监测方法:保障雪龙号冰区安全航行[D].大连:大连海事大学,2022.YAO J W.Sea ice monitoring method based on Mask R-CNN:Ensuring safe navigation of Xuelong in ice area[D].Dalian:Dalian Maritime University,2022.

[11] 胡思平.船舶驾驶室玻璃窗除雾系统方案[J].船舶工程,2020,42(S1):276-278.HU S P.Scheme of demisting system for wheelhouse windows in vessel[J].Ship Engineering,2020,42(S1):276-278.

[12] ROY S,KUMAR H,ANDERSON R.Efficient defrosting of an inclined flat surface[J].International Journal of Heat and Mass Transfer,2005,48(13):2613-2624.

[13] AROUSSI A,GHANI S A A A,HASSAN A,et al.Assessing the performance of electrically heated windshield[C]//SAE Technical Paper Series.SAE International,2002.

[14] PAPANASTASIOU D T,SCHULTHEISS A,MU?OZ-ROJAS D,et al.transparent heaters:a review[J].Advanced Functional Materials,2020,30(21):1910225.

[15] TSUNEMOTO H,ISHITANI H,KAKUBARI Y.Study of melting phenomenon of frost and ice on the windshield[J].JSAE Review,1994,15(1):53-58.

[16] 赵纭.汽车后风窗玻璃电加热除霜系统设计[D].长沙:湖南大学,2016.ZHAO Y.Design of rear window electric heating defrosting system[D].Changsha:Hunan University,2016.

[17] HUI F M,ZHAO T C,LI X Q,et al.Satellite-based sea ice navigation for Prydz Bay,east Antarctica[J].Remote Sensing,2017,9(6):518.

[18] MAKKONEN L.Ice adhesion:theory,measurements and countermeasures[J].Journal of Adhesion Science and Technology,2012,26(4/5):413-445.

[19] 楼建文.中空玻璃传热系数影响因素研究[J].福建建筑,2018(5):109-111.LOU J W.Study on the influence factors of heated transfer coefficient of hollow glass[J].Fujian Architecture & Construction,2018(5):109-111.

[20] MAJUMDAR P.Computational fluid dynamics analysis of turbulent flow[M]//Computational Fluid Dynamics Technologies and Applications.In Tech,2011.

[21] ANSYS Fluent User’s Guide[EB/OL].[2025-01-07].https://ansyshelp.ansys.com/public/account/secured?returnurl=/Views/Secured/corp/v242/en/flu_ug/flu_ug.html.

[22] 中国船级社.极地船舶指南[R].2023-04-01.China Classification Society.Guidelines for polar ships[R].2023-04-01.

[23] INGERSOLL J G,KALMAN T G,MAXWELL L M,et al.Automobile passenger compartment thermal comfort model-part I:compartment cool-down/warm-up calculation[C]//SAE Technical Paper Series.SAE International,1992:232-242.

[24] 杨波,陈棋,罗勇水,等.圆孔射流核心区衰减对凹面冲击换热与流动特性影响数值研究[J].工程热物理学报,2022,43(11):3041-3048.YANG B,CHEN Q,LUO Y S,et al.Numerical study of heat transfer and flow characteristics of nozzle impingement jet on concave surface by jet potential core analysis[J].Journal of Engineering Thermophysics,2022,43(11):3041-3048.

[25] MOUKALLED F,MANGANI L,DARWISH M.The finite volume method in computational fluid dynamics:an advanced introduction with OpenFOAM? and Matlab?[M].Cham:Springer,2016.

[26] 赵林林.基于人体热舒适性的汽车空调除霜性能研究[D].上海:上海工程技术大学,2016.ZHAO L L.Study on defrosting performance of automobile air conditioning based on human thermal comfort[D].Shanghai:Shanghai University of Engineering Science,2016.

[27] SHAN Y,ZHANG J Z,XIE G N.Convective heat transfer for multiple rows of impinging air jets with small jet-to-jet spacing in a semi-confined channel[J].International Journal of Heat and Mass Transfer,2015,86:832-842.

[28] BARBOSA F V,TEIXEIRA S F C F,TEIXEIRA J C F.Convection from multiple air jet impingement-a review[J].Applied Thermal Engineering,2023,218:119307.

[29] ZUCKERMAN N,LIOR N.Jet impingement heat transfer:physics,correlations,and numerical modeling[M]// Advances in Heat Transfer.Amsterdam:Elsevier,2006:565-631.

[30] VINZE R,CHANDEL S,LIMAYE M D,et al.Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets[J].International Journal of Thermal Sciences,2016,99:136-151.

[31] 杨静.基于最速降线曲面、斜面等贴附射流送风模式的适用性模拟[D].西安:西安建筑科技大学,2017.YANG J.Numerical simulation on applicability of attached air curtain ventilation based on the brachistochrone curved wall,inclined wall etc.[D].Xi’an:Xi’an University of Architecture and Technology,2017.

[32] 王时雨,亢燕铭,钟珂.送风速度对夏热冬冷地区办公室供暖效果的影响[J].东华大学学报(自然科学版),2014,40(4):491-496.WANG S Y,KANG Y M,ZHONG K.Influence of supply air velocity on office room heating in hot-summer and cold-winter climatic zones[J].Journal of Donghua University (Natural Science),2014,40(4):491-496.

[33] 董志勇.射流力学[M].北京:科学出版社,2015.DONG Z Y.Jet dynamics[M].Beijing:Science Press,2015.

[34] KATOPODES N D.Ideal fluid flow[M]//Free-Surface Flow.Amsterdam:Elsevier,2019:428-515.

基本信息:

DOI:10.19886/j.cnki.dhdz.2024.0402

中图分类号:U674.81

引用信息:

[1]裘莉莉,魏世松,安毓辉等.极地船舶驾驶室不同送风方式对加速热风辅助电加热玻璃化霜的影响[J].东华大学学报(自然科学版),2025,51(03):143-151.DOI:10.19886/j.cnki.dhdz.2024.0402.

基金信息:

国家自然科学基金(52008078)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索