nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 06, v.51 54-61
基于轻量化YOLOv8-GECS的织物疵点检测算法
基金项目(Foundation): 国家留学基金管理委员会资助项目(202310810005)
邮箱(Email): 64428786@qq.com;
DOI: 10.19886/j.cnki.dhdz.2024.0331
摘要:

针对织物疵点检测模型因占用内存空间大、计算复杂度高、疵点目标小,难以满足纺织品检测精度和检测速度要求的问题,提出一种基于改进YOLOv8n的轻量化织物疵点检测模型(YOLOv8-GECS)。设计GvanillaNet网络替换基线模型的主干网络,消除冗余的分支结构,大幅减少模型的参数量。在颈部网络部分引入轻量化CARAFE上采样算子,在少量增加计算成本的同时,扩大了模型的感受野。使用GSConv卷积搭建的Slim-Neck设计范式对模型进行轻量化改进,在减少模型参数量的同时最大程度保留通道的隐藏连接。提出ERSCA注意力机制,该模块不仅能从通道和空间维度上提取更丰富的语义信息,还能自适应地聚焦关键的疵点特征,显著增强了对目标疵点的检测效果。试验结果表明:改进后的YOLOv8-GECS模型参数量、计算量为原YOLOv8n模型的52.1%、57.3%,FPS提高了35.8帧/s,平均精度均值达92.5%,较原始模型提高了3.5%,为织物疵点检测领域提供了解决方案。

Abstract:

To address the issues of large memory consumption, high computational complexity, and the challenge of detecting small defects that are difficult to detect with high accuracy and speed in fabric defect detection models, a lightweight fabric defect detection model based on the improved YOLOv8n(YOLOv8-GECS) is proposed. The GvanillaNet network is designed to replace the backbone network of the baseline model, eliminating redundant branch structures and significantly reducing the model's parameter count. A lightweight CARAFE upsampling operator is introduced in the neck network, which increases the model's receptive field with minimal additional computational cost. Then, the Slim-Neck design paradigm, built with GSConv convolutions, is applied to further reduce the model's parameters while preserving hidden connections within the channels to the greatest extent. Finally, the efficient residual spatial and channel attention(ERSCA) attention mechanism is proposed. This module not only extracts richer semantic information from both the channel and spatial dimensions but also adaptively focuses on key defect features, significantly enhancing the detection performance for fabric defects. Experimental results show that the improved YOLOv8-GECS model achieves 52.1% and 57.3% of the parameter and computational cost of the original YOLOv8n model, respectively, with an FPS increase of 35.8 frames per second. The mean average precision reaches 92.5%, a 3.5% improvement over the original model, providing a solution for the fabric defect detection field.

参考文献

[1] 李建琴,童文庆,周恒.数字化转型对纺织业升级的影响研究[J].丝绸,2024,61(1):1-10.LI J Q,TONG W Q,ZHOU H.Research on the influence of digital transformation on the textile industrial upgrading[J].Journal of Silk,2024,61(1):1-10.

[2] TIWARI V,SHARMA G.Automatic fabric fault detection using morphological operations on bit plane[J].Esrsa Publications,2013(10).

[3] WAN S J,LIN S,YUAN Q L,et al.A novel defect detection method for color printing fabrics based on attention mechanism and space-to-depth transformation[J].Signal,Image and Video Processing,2024,18(1):227-238.

[4] ABOUELELA A,ABBAS H M,ELDEEB H,et al.Automated vision system for localizing structural defects in textile fabrics[J].Pattern Recognition Letters,2005,26(10):1435-1443.

[5] GAO G S,ZHANG D,LI C L,et al.A novel patterned fabric defect detection algorithm based on GHOG and low-rank recovery[C]//2016 IEEE 13th International Conference on Signal Processing (ICSP).Chengdu,China.IEEE,2016:1118-1123.

[6] GUAN S Q,SHI X H.Fabric defect detection based on wavelet decomposition with one resolution level[C]//2008 International Symposium on Information Science and Engineering.Shanghai,China.IEEE,2008:281-285.

[7] 费利斌,徐洋,余智祺,等.基于改进Faster R-CNN的花色布瑕疵检测算法[J].东华大学学报(自然科学版),2022,48(2):75-80.FEI L B,XU Y,YU Z Q,et al.A defect detection algorithm for patterned fabrics based on improved Faster R-CNN[J].Journal of Donghua University (Natural Science),2022,48(2):75-80.

[8] 伍洪健,邓作杰,章银萍,等.基于YOLOv3的布匹瑕疵检测方法[J].湖南工程学院学报(自然科学版),2023,33(3):39-43.WU H J,DENG Z J,ZHANG Y P,et al.Defect detection method for textile fabrics based on YOLOv3[J].Journal of Hunan Institute of Engineering (Natural Science Edition),2023,33(3):39-43.

[9] 高敏,邹阳林,曹新旺.基于改进YOLOv5模型的织物疵点检测[J].现代纺织技术,2023,31(4):155-163.GAO M,ZOU Y L,CAO X W.Fabric defect detection based on an improved YOLOv5 model[J].Advanced Textile Technology,2023,31(4):155-163.

[10] 陈金广,李雪,邵景峰,等.改进YOLOv5网络的轻量级服装目标检测方法[J].纺织学报,2022,43(10):155-160.CHEN J G,LI X,SHAO J F,et al.Lightweight clothing detection method based on an improved YOLOv5 network[J].Journal of Textile Research,2022,43(10):155-160.

[11] 鲍禹辰,徐增波,田丙强.基于YOLOv8改进的服装疵点检测算法[J].东华大学学报(自然科学版),2024,50(4):49-56.BAO Y C,XU Z B,TIAN B Q.Improvement garment defect detection algorithm based on YOLOv8[J].Journal of Donghua University (Natural Science),2024,50(4):49-56.

[12] 杨瑞君,张浩,叶璟.改进YOLOv8n的轻量级遥感图像军用飞机检测算法[J].电子测量技术,2025,48(1):154-165.YANG R J,ZHANG H,YE J.Improved lightweight military aircraft detection algorithm for remote sensing images with YOLOv8n[J].Electronic Measurement Technology,2025,48(1):154-165.

[13] 项家灏,徐慧英,徐广平,等.MECW-YOLO:基于改进YOLOv8的无人机视角小目标检测算法[J/OL].计算机工程与科学,2024:1-12.(2024-12-25).https://kns.cnki.net/kcms/detail/43.1258.TP.20241225.1106.008.html.XIANG J H,XU H Y,XU G P,et al.MECW-YOLO:an algorithm for detecting small targets in drone perspective using improved YOLOv8[J/OL].Computer Engineering & Science,2024:1-12.

[14] 熊伟,路鑫,邱维进,等.基于YOLOv8的输电线路绝缘子表面缺陷识别算法[J].电子测量技术,2025,48(2):178-188.XIONG W,LU X,QIU W J,et al.Surface defect detection algorithm of transmission line insulators based on YOLOv8[J].Electronic Measurement Technology,2025,48(2):178-188.

[15] LI H,LI J,WEI H,et al.Slim-neck by GSConv:a better design paradigm of detector architectures for autonomous vehicles[EB/OL].(2024-07-02)[2024-10-21].https://arxiv.org/abs/2206.02424.

基本信息:

DOI:10.19886/j.cnki.dhdz.2024.0331

中图分类号:TS101.97;TP391.41

引用信息:

[1]张庆,林富生,陈泽纯,等.基于轻量化YOLOv8-GECS的织物疵点检测算法[J].东华大学学报(自然科学版),2025,51(06):54-61.DOI:10.19886/j.cnki.dhdz.2024.0331.

基金信息:

国家留学基金管理委员会资助项目(202310810005)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索